Qwen2.5-Omni Offline Inference Examples¶
Source https://github.com/vllm-project/vllm/tree/main/examples/offline_inference/qwen2_5_omni.
This folder provides several example scripts on how to inference Qwen2.5-Omni offline.
Thinker Only¶
# Audio + image + video
python examples/offline_inference/qwen2_5_omni/only_thinker.py \
-q mixed_modalities
# Read vision and audio inputs from a single video file
# NOTE: V1 engine does not support interleaved modalities yet.
python examples/offline_inference/qwen2_5_omni/only_thinker.py \
-q use_audio_in_video
# Multiple audios
python examples/offline_inference/qwen2_5_omni/only_thinker.py \
-q multi_audios
This script will run the thinker part of Qwen2.5-Omni, and generate text response.
You can also test Qwen2.5-Omni on a single modality:
# Process audio inputs
python examples/offline_inference/audio_language.py \
--model-type qwen2_5_omni
# Process image inputs
python examples/offline_inference/vision_language.py \
--modality image \
--model-type qwen2_5_omni
# Process video inputs
python examples/offline_inference/vision_language.py \
--modality video \
--model-type qwen2_5_omni
Example materials¶
only_thinker.py
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""
This example shows how to use vLLM for running offline inference
with the correct prompt format on Qwen2.5-Omni (thinker only).
"""
from typing import NamedTuple
from vllm import LLM, SamplingParams
from vllm.assets.audio import AudioAsset
from vllm.assets.image import ImageAsset
from vllm.assets.video import VideoAsset
from vllm.multimodal.image import convert_image_mode
from vllm.utils.argparse_utils import FlexibleArgumentParser
class QueryResult(NamedTuple):
inputs: dict
limit_mm_per_prompt: dict[str, int]
# NOTE: The default `max_num_seqs` and `max_model_len` may result in OOM on
# lower-end GPUs.
# Unless specified, these settings have been tested to work on a single L4.
default_system = (
"You are Qwen, a virtual human developed by the Qwen Team, Alibaba "
"Group, capable of perceiving auditory and visual inputs, as well as "
"generating text and speech."
)
def get_mixed_modalities_query() -> QueryResult:
question = (
"What is recited in the audio? "
"What is the content of this image? Why is this video funny?"
)
prompt = (
f"<|im_start|>system\n{default_system}<|im_end|>\n"
"<|im_start|>user\n<|audio_bos|><|AUDIO|><|audio_eos|>"
"<|vision_bos|><|IMAGE|><|vision_eos|>"
"<|vision_bos|><|VIDEO|><|vision_eos|>"
f"{question}<|im_end|>\n"
f"<|im_start|>assistant\n"
)
return QueryResult(
inputs={
"prompt": prompt,
"multi_modal_data": {
"audio": AudioAsset("mary_had_lamb").audio_and_sample_rate,
"image": convert_image_mode(
ImageAsset("cherry_blossom").pil_image, "RGB"
),
"video": VideoAsset(name="baby_reading", num_frames=16).np_ndarrays,
},
},
limit_mm_per_prompt={"audio": 1, "image": 1, "video": 1},
)
def get_use_audio_in_video_query() -> QueryResult:
question = (
"Describe the content of the video, then convert what the baby say into text."
)
prompt = (
f"<|im_start|>system\n{default_system}<|im_end|>\n"
"<|im_start|>user\n<|vision_bos|><|VIDEO|><|vision_eos|>"
f"{question}<|im_end|>\n"
f"<|im_start|>assistant\n"
)
asset = VideoAsset(name="baby_reading", num_frames=16)
audio = asset.get_audio(sampling_rate=16000)
return QueryResult(
inputs={
"prompt": prompt,
"multi_modal_data": {
"video": asset.np_ndarrays,
"audio": audio,
},
"mm_processor_kwargs": {
"use_audio_in_video": True,
},
},
limit_mm_per_prompt={"audio": 1, "video": 1},
)
def get_multi_audios_query() -> QueryResult:
question = "Are these two audio clips the same?"
prompt = (
f"<|im_start|>system\n{default_system}<|im_end|>\n"
"<|im_start|>user\n<|audio_bos|><|AUDIO|><|audio_eos|>"
"<|audio_bos|><|AUDIO|><|audio_eos|>"
f"{question}<|im_end|>\n"
f"<|im_start|>assistant\n"
)
return QueryResult(
inputs={
"prompt": prompt,
"multi_modal_data": {
"audio": [
AudioAsset("winning_call").audio_and_sample_rate,
AudioAsset("mary_had_lamb").audio_and_sample_rate,
],
},
},
limit_mm_per_prompt={
"audio": 2,
},
)
query_map = {
"mixed_modalities": get_mixed_modalities_query,
"use_audio_in_video": get_use_audio_in_video_query,
"multi_audios": get_multi_audios_query,
}
def main(args):
model_name = "Qwen/Qwen2.5-Omni-7B"
query_result = query_map[args.query_type]()
llm = LLM(
model=model_name,
max_model_len=5632,
max_num_seqs=5,
limit_mm_per_prompt=query_result.limit_mm_per_prompt,
seed=args.seed,
)
# We set temperature to 0.2 so that outputs can be different
# even when all prompts are identical when running batch inference.
sampling_params = SamplingParams(temperature=0.2, max_tokens=64)
outputs = llm.generate(query_result.inputs, sampling_params=sampling_params)
for o in outputs:
generated_text = o.outputs[0].text
print(generated_text)
def parse_args():
parser = FlexibleArgumentParser(
description="Demo on using vLLM for offline inference with "
"audio language models"
)
parser.add_argument(
"--query-type",
"-q",
type=str,
default="mixed_modalities",
choices=query_map.keys(),
help="Query type.",
)
parser.add_argument(
"--seed",
type=int,
default=None,
help="Set the seed when initializing `vllm.LLM`.",
)
return parser.parse_args()
if __name__ == "__main__":
args = parse_args()
main(args)